Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Overexpression of the poplar NF-YB7 transcription factor confers drought tolerance and improves water-use efficiency in Arabidopsis.

Identifieur interne : 002562 ( Main/Exploration ); précédent : 002561; suivant : 002563

Overexpression of the poplar NF-YB7 transcription factor confers drought tolerance and improves water-use efficiency in Arabidopsis.

Auteurs : Xiao Han [République populaire de Chine] ; Sha Tang ; Yi An ; Dong-Chao Zheng ; Xin-Li Xia ; Wei-Lun Yin

Source :

RBID : pubmed:24006421

Descripteurs français

English descriptors

Abstract

Water deficit is a serious environmental factor limiting the growth and productivity of plants worldwide. Improvement of drought tolerance and efficient water use are significant strategies to overcome this dilemma. In this study, a drought-responsive transcription factor, nuclear factor Y subunit B 7 (PdNF-YB7), induced by osmotic stress (PEG6000) and abscisic acid, was isolated from fast-growing poplar clone NE-19 [Populus nigra × (Populus deltoides × Populus nigra)]. Ectopic overexpression of PdNF-YB7 (oxPdB7) in Arabidopsis enhanced drought tolerance and whole-plant and instantaneous leaf water-use efficiency (WUE, the ratio of biomass produced to water consumed). Overexpressing lines had an increase in germination rate and root length and decrease in water loss and displayed higher photosynthetic rate, instantaneous leaf WUE, and leaf water potential to exhibit enhanced drought tolerance under water scarcity. Additionally, overexpression of PdNF-YB7 in Arabidopsis improved whole-plant WUE by increasing carbon assimilation and reducing transpiration with water abundance. These drought-tolerant, higher WUE transgenic Arabidopsis had earlier seedling establishment and higher biomass than controls under normal and drought conditions. In contrast, Arabidopsis mutant nf-yb3 was more sensitive to drought stress with lower WUE. However, complementation analysis indicated that complementary lines (nf-yb3/PdB7) had almost the same drought response and WUE as wild-type Col-0. Taken together, these results suggest that PdNF-YB7 positively confers drought tolerance and improves WUE in Arabidopsis; thus it could potentially be used in breeding drought-tolerant plants with increased production even under water deficiency.

DOI: 10.1093/jxb/ert262
PubMed: 24006421
PubMed Central: PMC3808328


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Overexpression of the poplar NF-YB7 transcription factor confers drought tolerance and improves water-use efficiency in Arabidopsis.</title>
<author>
<name sortKey="Han, Xiao" sort="Han, Xiao" uniqKey="Han X" first="Xiao" last="Han">Xiao Han</name>
<affiliation wicri:level="3">
<nlm:affiliation>Nation Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Nation Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tang, Sha" sort="Tang, Sha" uniqKey="Tang S" first="Sha" last="Tang">Sha Tang</name>
</author>
<author>
<name sortKey="An, Yi" sort="An, Yi" uniqKey="An Y" first="Yi" last="An">Yi An</name>
</author>
<author>
<name sortKey="Zheng, Dong Chao" sort="Zheng, Dong Chao" uniqKey="Zheng D" first="Dong-Chao" last="Zheng">Dong-Chao Zheng</name>
</author>
<author>
<name sortKey="Xia, Xin Li" sort="Xia, Xin Li" uniqKey="Xia X" first="Xin-Li" last="Xia">Xin-Li Xia</name>
</author>
<author>
<name sortKey="Yin, Wei Lun" sort="Yin, Wei Lun" uniqKey="Yin W" first="Wei-Lun" last="Yin">Wei-Lun Yin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24006421</idno>
<idno type="pmid">24006421</idno>
<idno type="doi">10.1093/jxb/ert262</idno>
<idno type="pmc">PMC3808328</idno>
<idno type="wicri:Area/Main/Corpus">002480</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002480</idno>
<idno type="wicri:Area/Main/Curation">002480</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002480</idno>
<idno type="wicri:Area/Main/Exploration">002480</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Overexpression of the poplar NF-YB7 transcription factor confers drought tolerance and improves water-use efficiency in Arabidopsis.</title>
<author>
<name sortKey="Han, Xiao" sort="Han, Xiao" uniqKey="Han X" first="Xiao" last="Han">Xiao Han</name>
<affiliation wicri:level="3">
<nlm:affiliation>Nation Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Nation Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tang, Sha" sort="Tang, Sha" uniqKey="Tang S" first="Sha" last="Tang">Sha Tang</name>
</author>
<author>
<name sortKey="An, Yi" sort="An, Yi" uniqKey="An Y" first="Yi" last="An">Yi An</name>
</author>
<author>
<name sortKey="Zheng, Dong Chao" sort="Zheng, Dong Chao" uniqKey="Zheng D" first="Dong-Chao" last="Zheng">Dong-Chao Zheng</name>
</author>
<author>
<name sortKey="Xia, Xin Li" sort="Xia, Xin Li" uniqKey="Xia X" first="Xin-Li" last="Xia">Xin-Li Xia</name>
</author>
<author>
<name sortKey="Yin, Wei Lun" sort="Yin, Wei Lun" uniqKey="Yin W" first="Wei-Lun" last="Yin">Wei-Lun Yin</name>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abscisic Acid (pharmacology)</term>
<term>Adaptation, Physiological (drug effects)</term>
<term>Adaptation, Physiological (genetics)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis (drug effects)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (physiology)</term>
<term>Crosses, Genetic (MeSH)</term>
<term>Droughts (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Genes, Plant (genetics)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Osmotic Pressure (drug effects)</term>
<term>Phenotype (MeSH)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (drug effects)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Subcellular Fractions (drug effects)</term>
<term>Subcellular Fractions (metabolism)</term>
<term>Transcription Factors (chemistry)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Acide abscissique (pharmacologie)</term>
<term>Adaptation physiologique (effets des médicaments et des substances chimiques)</term>
<term>Adaptation physiologique (génétique)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Arabidopsis (effets des médicaments et des substances chimiques)</term>
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (physiologie)</term>
<term>Croisements génétiques (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Eau (métabolisme)</term>
<term>Facteurs de transcription (composition chimique)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Fractions subcellulaires (effets des médicaments et des substances chimiques)</term>
<term>Fractions subcellulaires (métabolisme)</term>
<term>Gènes de plante (génétique)</term>
<term>Phénotype (MeSH)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Pression osmotique (effets des médicaments et des substances chimiques)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Sécheresses (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plant Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
<term>RNA, Messenger</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
<term>RNA, Messenger</term>
<term>Transcription Factors</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Abscisic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Arabidopsis</term>
<term>Gene Expression Regulation, Plant</term>
<term>Osmotic Pressure</term>
<term>Populus</term>
<term>Subcellular Fractions</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Arabidopsis</term>
<term>Fractions subcellulaires</term>
<term>Populus</term>
<term>Pression osmotique</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Arabidopsis</term>
<term>Genes, Plant</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Adaptation physiologique</term>
<term>Arabidopsis</term>
<term>Facteurs de transcription</term>
<term>Gènes de plante</term>
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Subcellular Fractions</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Eau</term>
<term>Facteurs de transcription</term>
<term>Fractions subcellulaires</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acide abscissique</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Arabidopsis</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Crosses, Genetic</term>
<term>Droughts</term>
<term>Gene Expression Profiling</term>
<term>Molecular Sequence Data</term>
<term>Phenotype</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Croisements génétiques</term>
<term>Données de séquences moléculaires</term>
<term>Phénotype</term>
<term>Sécheresses</term>
<term>Séquence d'acides aminés</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Water deficit is a serious environmental factor limiting the growth and productivity of plants worldwide. Improvement of drought tolerance and efficient water use are significant strategies to overcome this dilemma. In this study, a drought-responsive transcription factor, nuclear factor Y subunit B 7 (PdNF-YB7), induced by osmotic stress (PEG6000) and abscisic acid, was isolated from fast-growing poplar clone NE-19 [Populus nigra × (Populus deltoides × Populus nigra)]. Ectopic overexpression of PdNF-YB7 (oxPdB7) in Arabidopsis enhanced drought tolerance and whole-plant and instantaneous leaf water-use efficiency (WUE, the ratio of biomass produced to water consumed). Overexpressing lines had an increase in germination rate and root length and decrease in water loss and displayed higher photosynthetic rate, instantaneous leaf WUE, and leaf water potential to exhibit enhanced drought tolerance under water scarcity. Additionally, overexpression of PdNF-YB7 in Arabidopsis improved whole-plant WUE by increasing carbon assimilation and reducing transpiration with water abundance. These drought-tolerant, higher WUE transgenic Arabidopsis had earlier seedling establishment and higher biomass than controls under normal and drought conditions. In contrast, Arabidopsis mutant nf-yb3 was more sensitive to drought stress with lower WUE. However, complementation analysis indicated that complementary lines (nf-yb3/PdB7) had almost the same drought response and WUE as wild-type Col-0. Taken together, these results suggest that PdNF-YB7 positively confers drought tolerance and improves WUE in Arabidopsis; thus it could potentially be used in breeding drought-tolerant plants with increased production even under water deficiency.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24006421</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>05</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>64</Volume>
<Issue>14</Issue>
<PubDate>
<Year>2013</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Overexpression of the poplar NF-YB7 transcription factor confers drought tolerance and improves water-use efficiency in Arabidopsis.</ArticleTitle>
<Pagination>
<MedlinePgn>4589-601</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/ert262</ELocationID>
<Abstract>
<AbstractText>Water deficit is a serious environmental factor limiting the growth and productivity of plants worldwide. Improvement of drought tolerance and efficient water use are significant strategies to overcome this dilemma. In this study, a drought-responsive transcription factor, nuclear factor Y subunit B 7 (PdNF-YB7), induced by osmotic stress (PEG6000) and abscisic acid, was isolated from fast-growing poplar clone NE-19 [Populus nigra × (Populus deltoides × Populus nigra)]. Ectopic overexpression of PdNF-YB7 (oxPdB7) in Arabidopsis enhanced drought tolerance and whole-plant and instantaneous leaf water-use efficiency (WUE, the ratio of biomass produced to water consumed). Overexpressing lines had an increase in germination rate and root length and decrease in water loss and displayed higher photosynthetic rate, instantaneous leaf WUE, and leaf water potential to exhibit enhanced drought tolerance under water scarcity. Additionally, overexpression of PdNF-YB7 in Arabidopsis improved whole-plant WUE by increasing carbon assimilation and reducing transpiration with water abundance. These drought-tolerant, higher WUE transgenic Arabidopsis had earlier seedling establishment and higher biomass than controls under normal and drought conditions. In contrast, Arabidopsis mutant nf-yb3 was more sensitive to drought stress with lower WUE. However, complementation analysis indicated that complementary lines (nf-yb3/PdB7) had almost the same drought response and WUE as wild-type Col-0. Taken together, these results suggest that PdNF-YB7 positively confers drought tolerance and improves WUE in Arabidopsis; thus it could potentially be used in breeding drought-tolerant plants with increased production even under water deficiency.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Xiao</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Nation Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Sha</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>An</LastName>
<ForeName>Yi</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Dong-Chao</ForeName>
<Initials>DC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xia</LastName>
<ForeName>Xin-Li</ForeName>
<Initials>XL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Wei-Lun</ForeName>
<Initials>WL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>09</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>72S9A8J5GW</RegistryNumber>
<NameOfSubstance UI="D000040">Abscisic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000040" MajorTopicYN="N">Abscisic Acid</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="Y">Adaptation, Physiological</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003433" MajorTopicYN="N">Crosses, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="Y">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009997" MajorTopicYN="N">Osmotic Pressure</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013347" MajorTopicYN="N">Subcellular Fractions</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arabidopsis</Keyword>
<Keyword MajorTopicYN="N">NF-YB</Keyword>
<Keyword MajorTopicYN="N">drought tolerance</Keyword>
<Keyword MajorTopicYN="N">poplar</Keyword>
<Keyword MajorTopicYN="N">transcription factor</Keyword>
<Keyword MajorTopicYN="N">water-use efficiency.</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>9</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>9</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24006421</ArticleId>
<ArticleId IdType="pii">ert262</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/ert262</ArticleId>
<ArticleId IdType="pmc">PMC3808328</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Funct Integr Genomics. 2011 Jun;11(2):327-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21327447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Jun;58(5):843-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19207209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Apr;9(2):189-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16483835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2012;13(3):3458-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22489162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2009 Nov;230(6):1155-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19760263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Oct;228(5):709-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18600346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):625-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19019982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Nov;36(4):532-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):4-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19126689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1999 Oct 18;239(1):15-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10571030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Feb;45(4):523-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:247-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2010 May;10(2):265-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20111976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W465-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18424797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Sep;65(1-2):77-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17598077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2009 Jan 16;378(3):483-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19032934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Dec;148(4):1938-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18931143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Sep;136(1):2734-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15333755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Jan;15(1):5-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(4):765-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2010;10:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20067610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(6):e21805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21738795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 8;280(14):13606-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15647281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:781-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2012 Oct;195:24-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22920996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Aug;63(3):379-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20487380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Oct;9(10):1859-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9368419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Apr 11;320(5873):173</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18403687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Aug;20(8):2238-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18682547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2003 Aug;12(4):509-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12885171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2011 Aug;76(6):575-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21614644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Aug;234(2):229-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21399949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1978 Oct;62(4):670-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16660580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Jun;35(6):1156-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22220579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Dec 10;274(50):36009-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10585491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15270-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17881564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1986 Sep;1(2):209-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14975897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Mar;22(3):782-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20207753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2001 Jun 8;498(2-3):187-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11412854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jan 10;278(2):1336-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12401788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16450-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17923671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Jan;63(2):289-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17031511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Oct;6(5):410-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12972040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Sep;195(4):774-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22708996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Dec;22(12):4128-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21169508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2011 Jun;49(6):579-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21316979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Sep;61(14):4011-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20616154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2008 Mar;279(3):279-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18193457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2009 Jan;229(2):299-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18946679</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="An, Yi" sort="An, Yi" uniqKey="An Y" first="Yi" last="An">Yi An</name>
<name sortKey="Tang, Sha" sort="Tang, Sha" uniqKey="Tang S" first="Sha" last="Tang">Sha Tang</name>
<name sortKey="Xia, Xin Li" sort="Xia, Xin Li" uniqKey="Xia X" first="Xin-Li" last="Xia">Xin-Li Xia</name>
<name sortKey="Yin, Wei Lun" sort="Yin, Wei Lun" uniqKey="Yin W" first="Wei-Lun" last="Yin">Wei-Lun Yin</name>
<name sortKey="Zheng, Dong Chao" sort="Zheng, Dong Chao" uniqKey="Zheng D" first="Dong-Chao" last="Zheng">Dong-Chao Zheng</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Han, Xiao" sort="Han, Xiao" uniqKey="Han X" first="Xiao" last="Han">Xiao Han</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002562 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002562 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24006421
   |texte=   Overexpression of the poplar NF-YB7 transcription factor confers drought tolerance and improves water-use efficiency in Arabidopsis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24006421" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020